Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Bin Zhou,^a Peng-Fei Zhang,^b* Zhen-Chu Chen^a and Yuan-Jiang Pan^a

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bDepartment of Chemistry, Hangzhou Teachers College, Hangzhou 310012, People's Republic of China

Correspondence e-mail: zpf100@163.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.042 wR factor = 0.051 Data-to-parameter ratio = 10.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{19}H_{20}N_4O_2$, which is a key intermediate in the synthesis of natural products, has been synthesized by the reaction of alkenyl(phenyl)iodonium salts with benzotriazole. The keto O atom of the ethoxycarbonyl group is involved in an intramolecular hydrogen bond. In addition to the N– $H \cdots O$ intramolecular hydrogen bond, there are intra- and intermolecular N $-H \cdots O$, $C-H \cdots N$ and $C-H \cdots \pi$ weaker interactions in the crystal structure.

Comment

1-(1-Alkenyl)benzotriazoles have been widely used in the preparation of pyrrolo[2,3-d]pyrimidines, carbazoles and indoles. This versatility has also made them key intermediates in the synthesis of natural products. There are several methods for the synthesis of 1-(1-alkenyl)benzotriazoles. Previously, the most general methods for the preparation of 1-(1alkenyl)benzotriazoles were developed by Rees & Storr (1969) and involved the dehydrohalogenation of the product from the reaction of 1-chlorobenzotriazole and an olefin. Unfortunately, this mild and simple method always yielded a mixture of 1-(1-alkenyl)- and 2-(1-alkenyl)benzotriazoles. Recently, our research interest has centred on the chemistry of hypervalent iodine compounds; because of the excellent leaving group ability of a phenyliodonyl moiety, vinyl-(phenyl)iodonium salts undergo nucleophilic vinyl substitutions under mild conditions, thus providing a useful route for the synthesis of various kinds of olefins. In an extension of this investigation, we have examined the reaction of vinyl-(phenyl)iodonium salts with benzotriazole as a simple and convenient route for the stereoselective synthesis of 1-(1alkenyl)benzotriazoles. The crystal structure of the title compound, (I), provides an important proof for the mechanism of this kind of reaction, viz.an addition-elimination mechanism.

In the structure of (I), there are benzyl and benzotriazole aromatic rings. The C1/N1/C2/C3/N2 plane makes a dihedral an angle of 82.30 (4)° with the benzotriazole ring plane and an angle of 87.01 (8)° with the benzyl ring plane. The title compound shows an intramolecular hydrogen bond: N1– H20···O1 (Fig. 1). The C2–N2 = 1.431 (2) Å and C1–N1 =

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 21 April 2004 Accepted 10 May 2004 Online 15 May 2004

View of the title molecule, showing the atomic numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular hydrogen bond.

1.335 (2) Å bond distances indicate that there is less π delocalization with N1 bound to a Csp^3 atom than with N2 which is part of the aromatic benzotriazole system, showing that the benzylamine group is easily lost and the reaction proceeds *via* an additon–elimination mechanism (Zhang & Chen, 2002). There are intra- and intermolecular N–H···O, C–H···N and C–H··· π weaker interactions in the crystal structure.

Experimental

The white powder of (I) was synthesized according to Zhang & Chen (2002). A single crystal suitable for X-ray structure analysis was obtained by slow evaporation of a methanol solution at room temperature (m.p. 335-337 K).

Crystal data

	2
$C_{19}H_{20}N_4O_2$	$D_x = 1.241 \text{ Mg m}^{-3}$
$M_r = 336.39$	Mo $K\alpha$ radiation
Monoclinic, P2/c	Cell parameters from 20
a = 13.071 (3) Å	reflections
b = 8.360(1) Å	$\theta = 19.4 - 21.6^{\circ}$
c = 17.418 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 109.01 \ (2)^{\circ}$	T = 293.0 K
$V = 1799.7 (7) \text{ Å}^3$	Prism, colourless
Z = 4	$0.30 \times 0.30 \times 0.20 \text{ mm}$
Data collection	
Rigaku AFC-7R diffractometer	$h = 0 \rightarrow 15$

 $\omega/2\theta$ scans 4128 measured reflections 3976 independent reflections 3791 reflections with $I > 2.5\sigma(I)$ $R_{int} = 0.083$ $\theta_{max} = 27.5^{\circ}$ $k = 0 \rightarrow 10$ $k = 0 \rightarrow 10$ $l = -21 \rightarrow 19$ 3 standard reflections every 200 reflections intensity decay: 0.7% Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.042	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.051	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
S = 1.18	Extinction correction: Zachariaser
3791 reflections	(1967) type 2 Gaussian isotropic
227 parameters	Extinction coefficient: 35.72402
H-atom parameters constrained	

Table 1

H	ĺyd	lrogen-	bonding	geometry	(A,	°)).
---	-----	---------	---------	----------	-----	----	----

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ N1-H20\cdots O1 0.91 1.96 2.675 (2) 134 C4-H3\cdots N2 0.95 2.36 2.834 (2) 110 C4-H3\cdots N3 0.95 2.68 3.275 (3) 121 C15-H15\cdots N1 0.99 2.53 2.884 (3) 101 N1-H20\cdots O1 ⁱ 0.91 2.55 3.218 (2) 131 C19-H19\cdots C1g ⁱⁱ 0.98 2.55 3.482 (2) 159 C17-H17\cdots N1 ⁱⁱⁱ 0.94 2.69 3.582 (3) 159					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\begin{array}{c} N1 - H20 \cdots O1 \\ C4 - H3 \cdots N2 \\ C4 - H3 \cdots N3 \\ C15 - H15 \cdots N1 \\ N1 - H20 \cdots O1^{i} \\ C19 - H19 \cdots C1g^{ii} \\ C17 - H17 \cdots N1^{iii} \end{array}$	0.91 0.95 0.95 0.99 0.91 0.98 0.94	1.96 2.36 2.68 2.53 2.55 2.55 2.55 2.69	2.675 (2) 2.834 (2) 3.275 (3) 2.884 (3) 3.218 (2) 3.482 (2) 3.582 (3)	134 110 121 101 131 159 159

Symmetry codes: (i) $1 - x, y, \frac{3}{2} - z$; (ii) $x, -y, \frac{1}{2} + z$; (iii) x, y - 1, z. C1g is the centroid of the C5–C10 benzene ring.

H atoms were included but not refined.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *PROCESS* in *TEXSAN* (Molecular Structure Corporation, 1992); program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *LS* in *TEXSAN*; molecular graphics: *DIRDIF* (Beurskens *et al.*, 1992); software used to prepare material for publication: *FINISH* in *TEXSAN*.

The authors thank the Chinese Academy of Sciences and the National Natural Science Foundation of China (No. 203760160) and the Natural Science Foundation of Zhejiang Province (No. 202075).

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System*. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software and TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Rees, C. W. & Storr, R. C. (1969). J. Chem. Soc. C, pp. 1478-1479.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175–189. Oxford University Press.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
- Zhang, P. F. & Chen, Z. C. (2002). J. Chem. Res. (S), pp. 388-391.